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Abstract—We propose a novel, automatic generation process
for detail maps that allows the reduction of tiling artifacts
in real-time terrain rendering. This is achieved by training a
generative adversarial network (GAN) with a single input texture
and subsequently using it to synthesize a huge texture spanning
the whole terrain. The low-frequency components of the GAN
output are extracted, down-scaled and combined with the high-
frequency components of the input texture during rendering. This
results in a terrain texture that is both highly detailed and non-
repetitive, which eliminates the tiling artifacts without decreasing
overall image quality. The rendering is efficient regarding both
memory consumption and computational costs. Furthermore, it is
orthogonal to other techniques for terrain texture improvements
such as texture splatting and can directly be combined with them.

I. INTRODUCTION

Terrain rendering is an important aspect of many real-
time applications such as simulators or video games. Among
the different terrain representations that have been proposed,
combining a triangle mesh representing the coarse-scale ge-
ometry with texture maps representing the finer details is
the most popular choice. While the creation of convincing
textures is mainly performed by artists or designers in a time-
consuming and costly process, automatic texture generation
allows the reduction of the development and production costs
significantly.

Texturing huge terrains imposes the challenge of cover-
ing a large area while still preserving a high detail density
which normally demands a lot of texture memory. A common
approach is therefore to repeat a single texture with high
resolution but small spatial extend over the whole terrain.
However, albeit the efficiency regarding memory consumption
and rendering time, this strategy results in undesirable visible
tiling artifacts such as seams or repetitions. As the human
perception is well-trained to notice patterns, it is desirable to
take measures that reduce those tiling artifacts.

In detail mapping, two textures are used: The first one
spans the whole terrain but contains only low-frequent details,
which allows high compression rates. The second one is much
smaller but more detailed and contains only high frequencies.
It is tiled over the terrain and added onto the first one.

The generation of those detail maps is however not straight-
forward and either requires manual work of an artist or
the combination of available maps that might not fit well
together. While there are visually superior techniques for
terrain mapping, detail mapping is still popular, due to its

simplicity and efficiency in implementation, especially in areas
that are constrained by production budget or limitations of
target hardware such as the mobile sector.

In this paper, we propose to overcome the above mentioned
issues with a novel automatic detail mapping approach that is
efficient and significantly reduces unpleasant tiling artifacts.
From a single terrain texture, we train a generative adversarial
network (GAN) [1], [2], [3] to capture its structure and color.
Then the GAN is used to generate a huge texture map that
covers the whole terrain and provides high details at every
location. In order to overcome artifacts such as blurriness or
color shifts, we only extract the low-frequency component
of the generated huge texture map. High-frequency features
from the exemplar are recombined with the low-frequency
component. The low-frequency map can be substantially com-
pressed (e.g. by a factor of 100) without visible loss, while
the high-frequency map contains finer details than the one
fabricated by the GAN. Thus, our approach strongly improves
memory efficiency and is visually superior when compared to
the synthesized texture that covers that whole terrain.

After the initial pre-processing, detail maps can be generated
for arbitrary terrain sizes in a matter of seconds to minutes.
The adapted rendering process is highly efficient, as it requires
only a texture mixing step within the fragment shader. This
allows easy integration into any other terrain texturing tech-
nique such as texture splatting, a well-known technique used
to cover a terrain with multiple materials.

II. RELATED WORK

Related work comprises the developments in terrain textur-
ing as well as in image and texture synthesis.

Terrain texturing: Especially since the introduction of
programmable shaders, there exists a wide variety of texturing
approaches, many of which are tailored to specific projects
and never have been documented publicly. However, there are
some basic techniques which have been proven so useful, that
they are applied in many projects. Texture splatting [4] uses
a fixed set of materials, where each is represented by one
or multiple textures, and assigns them in varying strengths to
different parts of the terrain, using either vertex attributes or
assignment maps. Mega textures use a high-resolution texture
map that is specifically designed for a terrain representation
and rely on advanced texture streaming and LOD algorithms
to manage the enormous amount of data [5]. They also rely on



manual artistic work for the creation and have high hardware
demands, but offer a great level of control and extremely high
visual quality.

As texture tiling often results in visible artifacts, several
approaches have been proposed to reduce these artifacts.
Perturbing the UV coordinates offsets texture features and
greatly reduces repetitions [6]. Wang tiles [7] use an arbitrary
number of different texture patches or tiles. These can be
combined with a subset of other tiles sharing the same tile edge
colors. This technique allows the synthesis of complex textures
with strongly reduced visibility of repetitions. However, the
creation of these tiles is a hard problem and it is more difficult
to implement than other techniques described inhere. In order
to avoid the complex tiling problems, procedural techniques
might be used to generate textures of arbitrary sizes. Such
textures might be used to automatically compute mega tex-
tures and thus share their properties. However, they require
specialized tools for their initial creation, which might be less
intuitive than traditional texture painting or the processing of
photographed textures [8]. In addition, the reproduction of
photo-realistic textures is difficult.

Image and texture synthesis: While early work on
texture synthesis (e.g. [9]) already indicated the potential to-
wards automatically synthesizing textures with characteristics
similar to the reference image, recent neural network based
approaches based on generative models for image [10] and
texture synthesis [11], [12] have lead to significant improve-
ments.

Especially GANs have shown to produce a near infinite vari-
ety of realistic imagery from a low-dimensional seed sampled
from a simple distribution. Apart from images and textures,
this technique has been investigated for authoring the terrain of
virtual worlds. Beckham and Pal. [13] synthesize a heightmap
and a corresponding texture using unconditional [10] and
conditional [14] GANs. The heightmap is generated from
a low-dimensional seed producing a gray-scale image. This
serves as input to an encoder-decoder network in order to
produce a colored terrain texture conditioned on the relief.
Guerin [15] propose an interactive terrain authoring system
where GANs are trained dedicated to different types of terrain
features that are easy to sketch.

A different line of research focuses on high-quality image
generation as the output of GANs still contains unpleasant
artifacts such a blurriness, color shifts, etc.. One way to
overcome such artifacts are a combination of GANs with
classic gradient-based algorithms. Wu et al. [16] propose
Gaussian-Poisson GANs and formulate image compositing as
a joint optimization problem that is constrained by both color
generated by a GAN and gradient information from high-
resolution images. Apart from that, image quality can also
be increased by incorporating techniques from image quality
analysis (IQA) as done by Vertolli et al. [17]. They show
that adapted model loss functions using and combining recent
distance measures from (IQA) improve the overall image
quality when used with encoder-decoder networks.

Our work is built on top of the approaches based on GANs.

However, in contrast to using the unchanged output fabricated
by the GAN, we only use the low-frequency characteristics of
the generated huge texture map. This map is then enhanced
by a subsequent transfer of the high-frequency characteristics
from the exemplar image. As a consequence, our approach
avoids blurriness, wash-out colors and checkerboard artifacts
that are strongly visible in previous neural network based
approaches.

III. METHODOLOGY

The essence of detail mapping is the splitting of texture
details into low- and high-frequency maps. The low-frequency
components are used to uniquely cover every part of the
terrain, which is important as several of these parts become
visible when viewing the terrain from far away. Then, the
high spatial resolution of the texture cannot be perceived due
to the limited resolution of the viewer and becomes irrelevant.
In contrast, a high spatial resolution is mandatory for the parts
of the terrain that are viewed from a short distance. In this case
tiling artifacts are not noticeable because only a small part of
the terrain is visible to the observer. Thus, detail mapping
produces visually pleasant results from either perspective.

Overview: As depicted in Figure 1, the first step of
our approach consists of training a GAN that later allows the
synthesis of a huge texture that spans the whole terrain while
preserving the main characteristics of the input texture. To
support arbitrary large output sizes, we split the generation
process into multiple unique tiles that later can be assembled
seamlessly. As the synthesized textures tend to have a shifted
color tone, an additional post-processing can be performed to
closely match the color distribution of the input texture.

While the result preserves the coarse characteristics of the
input texture adequately, it is lacking in visual quality for fine
details due to blurriness, color shifts and other artifacts pro-
duced by the network. For this reason, a subsequent optional
color correction step is applied and the texture is split into
its low-frequency and high-frequency components. The low-
frequency image can be down-sampled without a significant
loss of information allowing a memory reduction by a factor
of 100 with usual parameters. The same splitting strategy is
applied to the input texture, while only the high frequency
part is maintained. During the rendering, the high-frequency
component of the reference image and the low-frequency part
of the synthesized texture can be efficiently combined within
the fragment shader. This yields a high visual quality at a low
memory consumption.

Generative Adversarial Networks: Given an input tex-
ture, the first step of our pipeline is given by the generation
of a larger texture that preserves the characteristics of the
original image as much as possible. This is achieved by
exploiting Generative Adversarial Networks (GANs) [1], [2],
[3], a recently introduced deep-learning technique.

Inspired by game theory, GANs are based on the concept
of a competition between two players, the generator G and
the discriminator D. The generator G takes an input sample
z ∈ Rd drawn from a d-dimensional prior distribution pz(z)
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Fig. 1. Our pipeline for automatic detail maps generation: In a first step, a GAN is trained that allows the creation of a huge texture preserving the main
characteristics of the exemplar texture. As the visual quality of this synthesized texture is not sufficient for its direct usage, we split the texture into its
low-frequency and high-frequency components. Finally, we add the high-frequency components of the original texture onto the low-frequency texture obtained
from the GAN to generate a plausible texture.

and, based on the parameters θ(G), tries to transform it into
a plausible image x′. The discriminator D takes an image
or an image patch x′ and, based on the parameters θ(D),
computes a scalar that judges whether x′ has been sampled
from the training data or whether it has been fabricated by the
generator G. During the training procedure the discriminator
tries to optimize its ability to distinguish synthetic images
fabricated by the generator G from real images x that have
been sampled from the training set. In contrast, the generator
G tries to optimize its ability to fabricate images that cannot
be distinguished from real ones by the discriminator D. In
other words, the goal of the generator is the maximization of
the misclassification rate in the decisions by the discriminator
D, which can be stated as a cost function according to

J (G)(θ(D),θ(G)) = −J (D)(θ(D),θ(G)). (1)

A solution to these contradicting objectives can be obtained
in terms of the minimax game with the objective

argmin
θ(G)

max
θ(D)
−J (D)(θ(D),θ(G)) (2)

with the discriminator’s costs −J (D)(θ(D),θ(G)).
GAN training: In practice, neural networks are used

to represent the generator G and the discriminator D. The
training of G and D mathematically corresponds to finding
the parameters (θ(D),θ(G)) that represent a local optimum
of both objectives J (D) and J (G). To improve the capability
of the network to learn the local ingredients of the reference
image, we randomly extract patches with a fixed size of n×n
pixels from the reference image, which are then fed into the
iterative GAN training procedure. During this procedure, G
and D are trained in an alternating fashion (see [3], [18] for
additional details). The training of the generator G relies on
the input set Z = {z0, . . . , zk} of k samples, where at each
spatial position of the tensor zi ∈ Rm×n×d a d-dimensional
vector drawn from the distribution pz is used. The generator
then transforms the zi into images with x′i = G(zi), where
x′i ∈ Rn×n×3. Furthermore, the k patches X = {x0, . . . , xk}
with xi ∈ Rn×n×3 from the training image and k fabricated
patches X ′ = {x′0, . . . , x′k} serve as input for the training
of the discriminator D. Here, the samples xi ∈ X are
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Fig. 2. Generation of huge textures by stitching individual tiles. Tiles are
generated from overlapping parts of the input noise (a). Thus, generated tiles
must be cropped before they can be stitched together (b) (shown as 1D case).

randomly drawn patches in the reference image. While we
only used a single reference image in the scope of this work
to obtain patches for the GAN training, a database containing
multiple images could be used instead. For further details,
we refer to the work by Jetchev et al. [18]. Furthermore,
additional information such as normals, height maps, etc. can
be incorporated by adding them as separate channels to the
GAN input. After the training, we only need the generator
network for the subsequent steps to generate textures and the
discriminator can be discarded.

Synthesis of large output textures: After training the
GAN as described in the previous section, we use the generator
G to create new, large terrains. In principle, the generator is
able to synthesize output textures of any size. However, bigger
textures also exhibit an increased memory consumption which
might limit the system in practical situations. We therefore
exploit the local influence of the input noise to the output
to generate an arbitrary large output in subsequent steps. A
completely parallel generation process is also possible but
unnecessary due to the high generation speed (e.g. well under
a minute for typical terrain size).

In order to synthesize huge texture maps, the zi that are
passed to the generator are in Rm×l×d, where m× l denotes
the spatial resolution (e.g. 384× 384) and d its depths. Each
d-dimensional column of the zi is sampled from a uniform
distribution with a value range of [0, 1]. When m and l are
large (e.g. > 64 on current hardware) the memory require-
ments for a single forward pass through the generator network
are not tractable anymore. Therefore, we split the generation
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Fig. 3. Splitting a texture into low-frequency and high-frequency components.

process into several forward passes using overlapping subsets
extracted from zi. An overlap of 2 in each direction is a good
compromise between quality and efficiency. Furthermore, the
whole input is also padded by a border used as overlap from
the border tiles, which allows a homogeneous handling of all
the tiles (see Figure 2 (a)). Each subset is passed through
G leading to an individual image. These images might not
be stitched together yet, because they contain information
resulting from the overlap of the subsets. Instead, they need
to be cropped around the border, which removes repetitions
of features and results in stitchable edges (Figure 2 (b)).

While the seams are in fact not perfect as the overlap is
usually below the total influence range of each input value,
these imperfections are hardly visible and vanish completely
in the later processing. For later use, the tiling factor (the ratio
between the output image and the input image) should also be
stored.

Splitting into detail maps: Our algorithm relies on
splitting both the GAN output texture and the reference image
into their high-frequency and low-frequency parts so that the
low-frequency component of the GAN output and the high-
frequency component of the reference image can be used for
detail mapping.

To compute the low frequency map, the synthesized terrain
texture is transformed into Fourier space where the low
frequencies can be selected. For this purpose, choosing a
Gaussian kernel is appropriate, which results in a soft border
of the frequency selection and also allows for a straightforward
implementation by convolving the texture in the primal domain
with the same kernel. While the image size of the result
remains unchanged, the image has a greatly reduced entropy
which is why it can be down-sampled substantially without
loosing information.

In contrast, the extraction of the high-frequency components
of the reference image is performed by selecting the high
frequencies in Fourier space with an kernel complementary to
a Gaussian. This can be efficiently implemented in the primal
domain by subtracting the image convolved with a Gaussian
kernel from its unconvolved version, thanks to the additive
properties of Fourier transformation. This also means that both
textures can later efficiently be recombined in the shader by a
simple addition.

Due to the subtraction, the dynamic range of the result can
be too high to be stored in the same data type. To avoid data
overflows, we compress the dynamic range again by dividing
each color by 2 and adding neutral gray, which can efficiently
be reversed in the shader and does not diminish the visual

quality noticeably.
Color correction: Besides being slightly blurred and

containing artifacts typically produced by neural network
based approaches, the images generated by the GAN also de-
viate from the input image in color tone. If the characteristics
of the result should closely match the ones of the input image,
an additional color correction might be necessary.

In this regard, we found that a simple color shift yields
good results in many cases. The mean color of both the input
and the generated image are computed and each pixel color
of the generated image is shifted by the difference of these
means. Clipping to the dynamic range of the data type might
be necessary here.

Rendering: Rendering with the detail maps is straight
forward. Both textures are bound to the pixel shaders. Tex-
ture coordinates can either be computed from the vertex
position (as the low-frequency map spans the whole terrain)
or explicitly stored, which adds the advantage of reducing
stretching artifacts at steep parts of the terrain. As the high-
frequency map is tiled over the terrain, the texture coordinates
can just be scaled by the tiling factor. Then, the dynamic
range compression of the high-frequency map is reversed and
both textures are added. Additional texturing techniques such
as texture splatting can directly be applied and potentially
available resources like normal or displacement maps can be
reused without modification, as they usually only depend on
the local features of the terrain (glossmaps are one example
that could not be reused).

IV. RESULTS

We implemented the detail map generation in Python, based
on the GAN implementation published by Jetchev et al. [18].
The training was performed with the Theano GPU interface
on a nVidia GeForce GTX 1080, which resulted in a training
time of about 4 hours per image.

As the determination of a success measure for the training
of a GAN is still under investigation, a visual check of the
generated samples is required and the generator weights θ(G)

that fabricate visually pleasing outputs are stored.
Synthesis: We collected various terrain textures from

popular web resources (poliigon.com, freestocktextures.com
and textures.com). Figure 4 shows the results of the texture
synthesis. For most textures, we obtained decent results re-
garding the coarse characteristics of the texture. However,
the output appears often somewhat grainy and blurred. Most
problems occur with large features as present in e.g. regular
textures, which the GAN cannot preserve due to the use
of a limited filter size during the training. Increasing the
filter size (e.g. by switching to SGAN6 or SGAN7) makes
the training more expensive but can often be avoided by
simply downscaling the input image (e.g. from 10242 to 5122).
Furthermore, our proposed color correction is a simple yet
effective method of matching the output tone to the input.

The shortcomings of the synthesized images are mostly
corrected by the detail transfer (Figure 4). By taking the
low-frequency characteristics from the GAN output and the
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Fig. 4. The input texture (a,d), the texture synthesized with the GAN (b,e) and the result of our technique (c,f) are shown for textures containing a forest
ground and tiles. The close-up inspection reveals that the texture generated with our technique is similar to the input texture. When viewed from far, it is
similar to the texture synthesized with the GAN. Note that handling the tile texture is particularly challenging due to the high-frequency bandwidth of the
features but the results are still acceptable.

high-frequency component directly from the input image, we
can produce plausible variations of the reference texture that
contain both the coarse-scale characteristics as well as fine
details within the texture. However, the approach is limited
in cases where features are composed of a wide range of
frequencies, e.g. a brown stick on brown ground may look
greenish if placed into a grass context. In practice, these errors
are notable but mostly not conspicuous.

Mostly observing a high quality of the resulting textures,
we believe that this detail transfer can also be a valuable tool
outside the scope of terrain texturing.

Detail mapping: Figure 5 compares the conventional
tiling to detail mapping using our automatically generated
maps. Note how the tiling artifacts are greatly reduced while
the overall image quality remains the same. We also imple-
mented an interactive demo which allows the user to explore a
terrain from various angles and to switch between naive tiling
and detail mapping. For typical perspectives, both close by
and far away parts of the terrain are visible at the same time,
which demonstrates the overall good results on any scale.

Features in low-frequency map: Providing only a single
input image to the GAN prohibits it from learning meaningful
global features, which are simply not available in the training
data. Even though the large terrain texture synthesized by the
GAN is different everywhere, its lower frequencies contain
mostly noise like features. They are, however, still computed
from the input image and plausible when combined with the
higher frequencies taken from the reference image. Figure 6
shows the low-frequency components for various materials.
Their statistical distributions arise directly from the neural
network and there is no straightforward way to extract them
directly from the input image, which justifies the GAN train-
ing.

If more global structures are desired, these can be added by
using approaches like texture splatting [4]. This is completely
independent from our approach which focuses on tiling artifact
removal rather than global detail generation. Due to the orthog-
onality of the approaches, they can be directly combined.

Additional data channels: High-quality scenes require
multiple texture layers such as normal maps [19], displacement
maps, gloss maps or ambient occlusion maps. These maps
typically semantically depend on the diffuse color map. In

order to synthesize these additional maps in combination
with the diffuse color channels, we adapted the method of
Jetchev [18] to jointly train the network using diffuse color
channels with additional data modes. This is achieved by
stacking additional detail maps on top of the diffuse color
channels resulting in a d-channel image where d = 6, when
the combination of a diffuse color map and its normal map
is used. The additional channels increase training time and
also the memory requirements of the network. For the six-
channel image containing diffuse and normal information the
time consumed per epoch increased by a factor of 2 taking
roughly 240 seconds instead of 120 with a batch size of 64.
The results are shown in Figure 7.

V. CONCLUSION

We present a novel approach to automatically generate detail
maps from a single input image using generative adversarial
networks. This technique is especially suitable for low-budget
productions where costly work by artists or hardware availabil-
ity might be limited. As our detail mapping is fast regarding
both implementation and execution, this approach can be used
to automatically improve the visual quality of the output
without requiring more resources. It can also be combined
with almost any other terrain texturing method which can be
used to improve problems not addressed by our method such as
the addition of meaningful global features. The detail transfer
from original to generated texture could furthermore become
a valuable tool for other texture synthesis approaches.

Our proposed method might be extended in multiple di-
rections. While being a fundamental building block of our
approach, the implementation of the neural network is largely
independent from the rest of our pipeline. Being a very active
field of research, it can be expected that texture synthesis algo-
rithms will advance greatly in the future. Those improvements
can then be directly transferred to our approach. Furthermore,
with the structure of the terrain as input, a neural network
could be used to automatically generate low-frequency details
that align with terrain features. However, for truly global
details, different materials are usually desirable, which can
readily be achieved with approaches like texture splatting.
In addition, the local influence of the input noise of the
SGAN can be exploited in many ways. One way would be the



(a) (b) (c) (d) (e) (f)

Fig. 5. Naive tiling (left) compared to detail mapping using our automatically generated maps (right). With our approach, the tiling artifacts in distant regions
are greatly reduced, while small details in the regions nearby are well preserved.

Fig. 6. Comparison of different low-frequency textures. The textures depict
forest ground, grass, cobblestone, clay, stone wall and tiles (from top left to
bottom right).

(a) (b)

Fig. 7. Generation of multi-modal images. Given the original diffuse map
and the normal map as input (a), the GAN generates new plausible versions
for the diffuse map and the normal map (b). Other types of information such
as height maps can be integrated analogously.

automatic generation of Wang tiles even for large numbers of
edge classes.
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